Equations with discontinuous nonlinear semimonotone operators
نویسنده
چکیده
The aim of this paper is to present an existence theorem for the operator equation of Hammerstein type x + KF (x) = 0 with the discontinuous semimonotone operator F . Then the result is used to prove the existence of solution of the equations of Urysohn type. Some examples in the theory of nonlinear equations in Lp(Ω) are given for illustration.
منابع مشابه
Stochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملFixed-Point Methods for a Certain Class of Operators
We introduce in this paper a new class of nonlinear operators which contains, among others, the class of operators with semimonotone additive inverse and also the class of nonexpansive mappings. We study this class and discuss some of its properties. Then we present iterative procedures for computing fixed points of operators in this class, which allow for inexact solutions of the subproblems a...
متن کاملNonlinear Elliptic Functional Equations in Nonreflexive Banach Spaces
If the coefficient functions Aa have at most polynomial growth in u and its derivatives, we have shown in [ l ] how existence theorems for solutions of variational boundary value problems for the equation A (u) —f may be obtained from monotonicity assumptions on the nonlinear Dirichlet form of A, with extensions to weaker ellipticity assumptions in [3], [4], [9], and [15]. These results extend ...
متن کاملSolving infinite system of nonlinear integral equations by using F-generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.
In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...
متن کاملA Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type
In this paper, we generalize the Meir-Keeler condensing operators via a concept of the class of operators $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems. As an application of this extension, we analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally, we p...
متن کامل